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Chapter 1

Introduction

The use of geophysical tools for subsurface characterization has become a common prac-
tice in environmental studies and geo resources engineering for the last 50 years(e.g.,
Binley et al. (2015)). There are different non-invasive subsurface geoelectrical imaging
methods that were developed over the years such as the DC (Direct Current) method
(Schlumberger, 1912; Langer, 1936), Induced polarisation methods (Schlumberger, 1920),
electromagnetic methods (Deignan, 2008), seismic methods (Nolet, 1987), etc. The elec-
trical properties of the subsurface are highly influenced by the different properties of
the subsurface such as lithology (porosity, permeability, tortuosity, etc.), the pore fluids
(water saturation in pore spaces, the concentration of minerals in pore water) and their
chemistry (ionic concentration, transport of reactive elements through the pore spaces
and stretching of reactive strips). Among all these different petrophysical properties that
we can obtain from electric conductivity surveys, those regarding subsurface fluid flows
in the porous media are among the most important factors for society. Contaminant
transport through groundwater is very important for waste management studies. Density
driven flows such as those occurring in solubility trapping, during CO2 sequestration in
petroleum or groundwater aquifers or freshwater-saline water interaction in coastal areas
are some phenomena that can be studied and monitored via electrical conductivity mea-
surements. The instabilities discussed can happen at the size that is much smaller than
the method resolution. Thus we will be studying what is happening at the sub-resolution
scale or mainly pore scale. That is, the model essentially is studied in the mesoscale
(Jougnot, 2020; Müller et al., 2010), which is bigger than the pore/micro-scale, but it is
smaller than the field measurement scale.
In this geoelectrical modeling study, the measurements are done by injecting current
into the subsurface through a pair of electrodes and measuring the potential difference
between the other two electrodes between which we have the area under investigation.
When scanning the medium with numerous electrical conductivity measurements, it be-
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comes possible to reconstruct the distribution of electrical conductivity in the sub-surface
by inversion, and it is referred to as Electrical Resistivity Tomography (ERT) (Binley
and Kemna, 2005). The ERT’s time-variance can also be used to study the temporal
variability of the different physical processes with time-lapse ERT (Revil et al., 2012).
The present study deals with the geoelectrical modeling of density-driven instabilities in
porous media. In this report, we start by first the Theoretical Background (Chapter 2) of
the Rayleigh Taylor instabilities and geoelectrical modeling, the concepts that were used
in the study. After that, we discuss the numerical analysis and modeling (Chapter 3) that
were implemented. Then we test the validation of the model and the results obtained
(Chapter 4) from which it can be studied how the electrical conductivity varies with the
evolution of subsurface petrophysical processes during the development of convection.
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Chapter 2

Theoretical Background

The main aim is to study the evolution of a porous media’s electrical conductivity in
which Rayleigh Taylor Instability occurs at the Darcy scale. This study involves both
the modeling of Rayleigh Taylor instability in a porous media and then the subsequent
change in the effective electrical conductivity in this media.

2.1 RT Instabilities

The physical process that was numerically simulated is Rayleigh Taylor Instability (Rayleigh,

1900; Taylor, 1950). The Rayleigh Taylor Instability or RT Instability is an instability of

the interface between 2 fluids where the lighter fluid is pushing the denser fluid. It is a

dynamic process whereby the two fluids seek to reduce their combined potential energy.

The ensuing convection and mixing have far-reaching consequences in many natural and

human-made flows, ranging from supernovae to micro-scale pore geometries. This physi-

cal process is widespread in different subsurface phenomenon involving fluids of different

densities. We have a miscible fluid, and the density difference is brought about due to

the concentration difference between the top and the bottom part of the fluid in a porous

media, (Riaz and Hesse, 2006; Neufeld et al., 2010; Vreme et al., 2016; Hidalgo and Car-

rera, 2009; De Paoli et al., 2019).

We couple the Brinkman-Darcy equations along with the convection diffusion equations

with the introduction to the dispersion term in order to study the effect of concentration

dispersion (Hidalgo and Carrera, 2009).
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2.1.1 Dimensional Equations

The incompressible density-dependent flow and advective–diffusive–dispersive transport

equations governs the Raleigh-Taylor instability in a porous media. The classical Brinkman-

Darcy Equation is

−∇p−
(µ
k

)
u− ρgez = 0 (2.1)

where p (Pa) is pressure, µ(Pa s) is viscosity, k(m2) is permeability, ρ(kg/m3) is pore-fluid

density, g(m/s2) is acceleration due to gravity, u(m/s) is Darcy velocity. The continuity

equation is

∇ · u = 0, (2.2)

and

φ
∂c

∂t
= φ∇ · (D∇c)− u ·∇c. (2.3)

is the convection-diffusion equation where c(mol) is the concentration and D(m2/s) is

the anisotropic dispersion coefficient. The density contrast arises because of the different

concentrations in the heavier fluid and the lighter fluid and the relation between the

concentration and the density is given as

ρ = ρ0(1 + εc), (2.4)

where εc = ∆ρ/(rho0c0), and the z-axis is taken opposite the direction of gravity (g). The

anisotropic dispersion coefficient tensor is

Dij = (φDm + αT ||u||)δij +
(αL − αT )(uiuj)

(||u||)
, (2.5)

where, ∆ρ (Pa) is the difference in density between the two fluids. ez is the unit vector

pointing downwards along the direction of g. Dm is the molecular diffusion coefficient.

αL(in m) and αT (in m) are longitudinal and transverse dispersivities accordingly. δij(-)

is the Kronecker delta, and || · || notation is the Euclidean norm.

2.1.2 Non-dimensional Equations

For analysis purposes, it is convenient to write governing equations in a dimensionless

form. For the non-dimensional form, we use a non-dimensional number, namely the

7



Rayleigh Number (Ra), based on which the instability’s physics depends on.

Ra =
k∆ρgH

φDmµ
(2.6)

where H(in m) is the length scale of the media.

So basically, by changing any of these parameters, we will get a different Rayleigh number.

Now, obviously, we can get the same Rayleigh number for several sets of these parameters.

Thus, we can safely conclude that all of these sets of parameters will essentially give us

exactly the same physics. Also, the simulation time is very much decreased according to

the time scale defined in the non-dimensional case. The different scaling factors are as

follows:

Velocity scale,

U =
k∆ρg

µ
, (2.7)

Domain pressure scale,

P = δρgH, (2.8)

Time scale,

t
′
=
φH

U
. (2.9)

H is defined as the length scale, which is equal to the length dimension of the system.

Based on these scales the non dimensional system of equations are derived from equations

2.1, 2.2, 2.3, 2.4 and 2.5. The non-dimensional governing equations are

−∇p+Da(∇2u)− u+ cez = 0, (2.10)

∇ · u = 0 (2.11)

and
∂c

∂t
=

(
1

Ra

)
∇ · (D∇c)− u · c, (2.12)

where, Da is the Darcy number. The anisotropic diffusion coefficient is
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D = (1 +
αTU

φDm

)||u||δij +
(αL − αT )U

φDm

(uiuj)

(||u||)
. (2.13)

2.2 Effective electrical conductivity

Among the different geo-electrical methods, the Direct Current (DC) resistivity method
allows us to find the spatial distribution of conductivity and monitor the soil’s changes in
conductivity. These properties are highly affected by the lithology, pore fluid chemistry,
fluid dynamics in the porous media (Glover, 2015). In the measurement scale of DC
conductivity studies, the spatial variation of resistivity is monitored using four-electrode
measurements, two of them are used to inject current into the subsurface, and the other
two are used to measure the potential difference of the part of which we want to check
the resistivity of. The study aims to find out the effective electrical conductivity at the
mesoscopic scale (Müller et al., 2010; Jougnot, 2020) in a medium where the Rayleigh
Taylor instability in achieved by injecting direct current through it and check the changes
in the effective conductivity of the subsurface as it changes as the instability progresses.
The mesoscopic scale is the scale that is located between the measurement scale and the
pore/micro scale. In Müller et al. (2010), this scale was used in a seismic study, but this
scale can be used in all kinds of geophysical methods. In hydro-geophysics, this mesoscale
cannot be directly correlated to the Representative Elementary Volume (REV), but these
mesoscale properties such as porosity, water content, wettability, concentration gradient,
among other mesoscopic heterogeneities can strongly affect the flow and transport in a
porous media. In the study, we mainly focus on a single cell or a mesh in our electrical to-
mogram as we will see that it cannot be ignored when conducting field-scale measurements
(see also Jougnot et al. (2018); Ghosh et al. (2018)).

2.2.1 General Equations

For the numerical analysis of this method, we designed a numerical scheme to simulate

the evolution of the effective electrical conductivity of the Rayleigh Taylor Instability in a

porous media. The measurement of DC Resistivity is based on Ohm’s Law. It consists in

injecting an electrical current in a geological medium and measure the resulting electrical

potential differences to determine its electrical conductivity. In this case, the mesoscopic

scale is the main focus of the geoelectric study. The governing equation to get the potential

distribution in the media with an applied external potential and injected current (Binley

and Kemna, 2005) is given as,

∇ · (σ∇V ) = −I. (2.14)
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where σ is the electrical conductivity distribution in the media. V is the electric potential

map in the media and I is the intensity of the single current source from an electrode.

To discuss and study the conductivity of different petrophysical phenomena, the concept of

"geometrical factor" is fundamental. The geometrical factor (Kg) is a numerical multiplier

defined by the regular spacings between electrodes, which is used in conjunction with the

current-to-voltage ratio or conductance (Siemens, S) measured in electrical conductivity

surveys to give an apparent conductivity (σa) such that σa = G
Kg

. Note that this apparent

conductivity is a kind of average of the electrical conductivity distribution at the scale of

the measurement.

The conductivity actually depends on the media’s geometry or, more specifically, the

measurement length (l). For example, for a cylindrical case such as fig. 2.1,

Figure 2.1: Determining the Geometrical factor

the E is the externally applied electric field, I is the current intensity (A) through the

cylinder and J is the current density (A/m2). a is the measurement cross-section area.

The conductance, G (S) is defined as

G =
a

l
σ, (2.15)

and the geometrical factor, Kg is defined as

Kg =
a

l
. (2.16)
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2.2.2 Petrophysical relationship between ionic concentration and electrical

conductivity of the medium

The pore fluid’s conductivity depends mostly on concentrations and mobilities of ion

species present in the fluid (i.e., the charge carriers) (Glover, 2015). Suppose we consider

an ionic species i with charge Zie where Zi is the valency of the charge carrier and e is the

electronic charge (e ≈ 1.6022 × 10−19C). In an electric field ~E (V m−1) the force on this

charge is Zie ~E. µi is defined as the mobility (m2V −1s−1) of an electronic charge carrier in

a medium which mainly depends on the type of the charge carrier (mainly the size of the

ion), the medium and the temperature. The current density ~J (Am−2) is defined as the

charge that passes unit area per second and ni is the number of charge carriers passing

per second per unit volume and Di (in m2s−1) is the diffusion coefficient of the charged

species, then,
~J = niZieµi

~E, (2.17)

and the ionic mobility can be derived as

µi =
ZieDi

kbT
, (2.18)

where kb is the Boltzmann’s constant (≈ 1.3806×10−23m2kgs−1K−1) and T is temperature

(in K).By combining the equations eq. (2.17) and eq. (2.18), we may obtain the electrical

conductivity of for an ion in solution, often termed as the Nernst Einstein relationship

(Einstein, 1905):

σi =
DiZ

2
i e

2Nni

kbT
, (2.19)

where N (≈ 6.022 × 1023) is the Avogadro’s number. Now considering steady state such

that the driving electric force ZieE is exacty balanced by the viscous drag on the hydrated

ions 6πηr~v (according to Stoke’s law), where Vi (in m/s) is the velocity of the ion, it’s

hydrated radius is ri (in m) and the viscosity of the fluid, η (in Pas). Thus the ionic

mobility can be written as:

µi =
Zie

6πηr
. (2.20)
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From this expression of mobility combined with the general expression of conductivity,

σi = niZieµi, we obtain the conductivity of the ion in solution:

σi =
niZ

2
i e

2

6πηr
. (2.21)

Thus the conductivity is directly proportional to (i)the number of charge carriers per unit

volume, (ii) the square of the net charge each carrier carries and (iii)inversely proportional

to the radius of the hydrated ions and (iv) inversely proportional to the viscosity of the

pore fluid.

In practice, the most common and useful empirical formula for the conductivity of an

aqueous solution of NaCl given by Sen and Goode (1992) which is,

σf (T,Cf ) = (d1 + d2T + d3T
2)Cf −

(
d4 + d5 T

1 + d6
√
Cf

)
C

3/2
f (2.22)

where d1 = 5.6 [S l m−1mol−1],d2 = 0.27 [S l m−1mol−1] / oC, d3 =−1.51× 10−4 [S l

m−1mol−1] / oC2, d4 = 2.36 [S m−1/(mol l−1)3/2], d5 = 0.099 [S m−1/(mol l−1)3/2/oC],d6

= 0.214 [(mol l−1)−1/2], T is in oC and Cf is the salinity of the bulf pore fluid [mol l−1].

In a geological media, the charge transport happens through the pore fluid. Indeed, if

the rock material is composed of insulating materials like the silicates or the carbonates

which have a conductivity range approximately from 10−14 Sm−1 to 10−10 Sm−1 which is

quite negligible in contrast to the conductivity of the pore fluid which varies around 10−3

Sm−1 to 1 Sm−1. Thus, the conductivity of the domain is mainly dominated by the pore

fluid’s conductivity and how well these pore spaces are connected throughout the rock

and the rock’s microstructure. Thus the conductivity of the rock mainly depends on the

following factors:

i. The conductivity of the pore fluid.

ii. The porosity of the rock.

iii. The pore fluid saturation that is the degree to which the pore spaces are filled with the

conductive fluid.

iv. The connectivity and tortuosity of the pathways of the pore spaces inside the rock.

Archie et al. (1942) refers to the conductivity of a medium in a saturated condition as

σ =
1

F
σf , (2.23)
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where σ is electrical conductivity (Sm−1) of the porous medium and σf is electrical
conductivity (Sm−1) of pore water, F is the Formation factor (-) and n is the saturation
exponent(-). The formation factor, F quantifies the tortuosity of the medium (see Jougnot
et al. (2009, 2018)). The Formation factor is related to porosity by the relation: F = φ−m

(Archie’s first law), where m is called a cementation exponent. m and n depend on the
pore space and the water phase geometry. The equation 2.23 is based on the assumption
that the pore water salinity is homogeneously distributed in the wetting phase at the
considered scale (see Jougnot et al. (2018)). In the present study, we consider that the
ionic concentration simulated solving the RT instability corresponds to a given electrical
conductivity combining Eq. 2.22 and 2.23 for each cell of the numerical simulation.
From the concentration map from the Rayleigh Taylor simulation, we get the concentra-
tion of the fluid phase in the simulation Cf for each point in the medium mesh. From
the concentration data, Cf (x, y), we convert the concentration values to corresponding
conductivity values, σf (x, y) by applying Eq. 2.22. Now, we can determine the porosity
of the medium, φ and the formation factor, F and the value of the cementation exponent,
m, for the type of porous media that in under consideration for our case (For eq., F = 1.3

for consolidated sand and F = 2 for a sandstone). Now we have the values of sigmaf (x, y)

and F , thus, from equation 2.23, we can get the value of σ(x, y).
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Chapter 3

Numerical Analysis and Methods

Most of the numerical modeling and simulation has been done extensively in OpenFOAM.
Two modified solvers were mainly used in the simulation, one for solving the Rayleigh-
Taylor Instability and the other for solving the potential distribution in the subsurface.
The post-Processing of the results from the Rayleigh Taylor instability simulation, con-
ductivity modeling, and the preprocessing for mapping the concentration field to the
conductivity field is done in MATLAB. The work process can be described as in Fig.3.1
with an example for a random concentration distribution from the simulation.

Figure 3.1: Flowchart of the steps for the numerical simulations
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3.1 OpenFOAM

OpenFOAM (for "Open-source Field Operation And Manipulation") is a C++ toolbox

for the development of customized numerical solvers. It’s a free open-source software

used mainly for Computational Fluid Dynamics (CFD). For the simulations, OpenFOAM

version 5 is used.

Our coupled equations for the Rayleigh-Taylor Instability involved a Brinkman-Darcy

Equation (Eq.2.10)coupled with a convection-diffusion equation (Eq.2.12) with concen-

tration dispersion (Eq.2.13). The "laplacianFoam" solver solves the Laplace Equation for

unsteady, isotropic diffusion. The main governing equation for the laplacianFoam solver

is
∂T

∂t
−∇ · (DT∇T ) = 0, (3.1)

where T is the scalar field which is to be solved for and DT is the diffusion coefficient. The
laplacianFoam solver is modified to solve the Diffusion equation, and the Brinkman-Darcy
Equation is coupled along with it such that the solver solves for the concentration field
along with the Darcy velocity in a coupled manner. The Brinkman-Darcy equation is a
steady-state equation, unlike the convection-diffusion equation.
Now for analyzing the change in the subsurface’s effective conductivity as the instability
progresses, the Poisson’s Equation (Eq.2.14 )for calculating potential distribution in the
media with the injected current is used. In this study, there is no source or sink inside
the media, and all the current going through the media is essentially from an external
source, and all the current goes back to the sink current electrode assuming no leakage.
Therefore our principle equation is essentially a modified Laplace’s Equation which is

∇ · (σ∇V ) = 0. (3.2)

Nevertheless, before that, we had to map the concentration field obtained from the
Rayleigh-Taylor Instability simulation to a conductivity field. The conductivity of the
medium has been mapped from the concentration field of the pore fluid described in Sec-
tion: 2.2.2
In this example, the top denser layer’s conductivity has a value of 1000 S/m and less dense
fluid have a conductivity of 0.001 S/m. The effective conductivity (σeff ) is simulated after
importing the mapped conductivity field to another solver. The solver used is electro-
static foam which solves for electrostatic equations using a couple of Poisson’s Equations.
This solver is modified to solve the Eq.3.2, which solves for the overall potential field of
the domain. However, before measuring the model’s effective conductivity on the origi-
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nal Rayleigh Taylor Instability model, some validation tests were performed to check the
robustness of the numerical simulations. A detailed description of the procedure will be
discussed in the results section (Section 4.1). For the testing, some help of OpenFOAM’s
post-Processing utility has been used as the probe feature. Using the probe utility, the
potential value at any part of the domain can be obtained along any line. The measured
values of potential at the potential electrodes (P1 and P2), are shown in figure 3.3 has
been obtained by using the probes. Also, they are used to obtain some potential values
and resistivity values to calculate the current passing through the media. The C1 and
C2 are the current electrodes from where the external current has been injected into the
media.

3.2 Geometry and Boundary conditions of the system

3.2.1 Rayleigh Taylor Instability modelling

The basic geometry that has been used in the Rayleigh-Taylor Instability is in consid-
ering the length scale of 1m. Some basic OpenFoam boundary conditions that are used
here are fixedGradient, zeroGradient, cyclic and fixedValue. The fixedGradient boundary
condition gives a fixed gradient condition that the patch field’s value is calculated that
the there is no change in the gradient of the field. The zeroGradient boundary condition
applies a zero-gradient condition from the internal patch field onto the patch faces. The
cyclic boundary condition enforces a cyclic condition between a pair of boundaries. The
fixedValue prescribes the value of a field on a certain boundary of the domain. This value
could be constant or dependent on time and space coordinates.
The geometry for the simulation is essentially a square with a side length of 1m but with
a "cyclic" boundary condition between the right and left walls which makes the geometric
domain to be a layer with an infinite length and the width being 1m in order to simulate
a reservoir like scenario. The pressure boundary condition is such that it has a "fixed-
Gradient" with a gradient of -1 at the top, which is accounting for the continuation of
pressure throughout the media and not a sudden change at the top boundary. The pres-
sure boundary condition for the lower boundary is 0 Pa to keep a reference concerning
which all the pressure in the domain has been calculated. The velocity boundary condi-
tions are "zeroGradient" at both the top and the bottom surfaces. The initial condition
for the concentration boundary condition is maintained such that the higher concentra-
tion pore fluid is occupying the top half of the domain, and the lower concentration pore
fluid is occupying the bottom half of the domain, as shown in fig:3.2.
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Figure 3.2: Concentration field at t=0

3.2.2 Geo-electrical modelling

The modeling has been done similar to the Schlumberger survey geometry with four
electrodes, two current electrodes (C1 and C2) at two extremes and two inner potential
electrodes (P1 and P2) for measuring the potential values at two extremes of the study-
domain as shown in the figure 3.3, similar to the experimental paper (Jougnot et al.
(2018)) It has to be kept in mind that the potential electrodes should be outside the
heterogeneous domain in the homogeneous region to ensure less error due to measurement.
The zone of investigation is essentially between the electrodes P1 and P2. Thus we map
the concentration field at each time step from the RT Instability study to conductivity
maps and import the field between the electrodes P1 and P2. The C1 and C2 electrodes
are close to the potential electrodes. The distance between the potential electrodes is
1m and the distance between C1 and P1 and between C2 and P2 id 0.2m. The distance
between C1, P1 and C2, P2 is the approximate distance for which we got an almost
minimum error in determining the effective conductance. The outer part outside our
main investigation area has been kept at a higher conductivity (σex) to have a lower error
in the model. The value of σex was investigated that the model gives a fairly good result
for a conductivity contrast from 100 S/m to 1 × 107 S/m as explained in section 4.1.1.
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Figure 3.3: Geoelectric modeling configuration. C1 and C2 are the current electrodes, and P1, P2 are
the potential electrodes. C1 and C2 inject current in the medium. P1 and P2 measure the potential at
the selected positions.

The potential boundary condition is given as 1V to the left wall of the system and 0V to
the right wall of the system so that the net potential difference between the two extremes
of the system is 1V, which helps to inject the current in the system from C1 to C2.

3.3 Electrical conductivity anisotropy

The anisotropy test is necessary to test the relation of the effective conductivity to the

concentration field’s spatial distribution. Since the simulation is mainly a gravity-driven

instability, the concentration distribution is dependent on the orientation of the media,

and hence the effective conductivity will also be sensitive to the orientation. To study this

effect, the effective bulk conductivity has been calculated for the same simulation but the

porous media has been rotated by 90o around it’s center i.e. imposing transverse electrical

transport concerning the main flow direction. The fig.3.4 illustrates the anisotropy simu-

lation setup. The anisotropy factor, λ is a dimensionless quantity (Linde and Pedersen,
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Figure 3.4: Numerical study of the anisotropy in the effective electrical bulk conductivity for a.the original
simulation orientation and b.a rotation of the set of electrodes with respect to the medium by 90o

2004) and is calculated as

λ =

√
σsim

σsim
90o

, (3.3)

where σsim and σsim
90o are the longitudinal and the transverse simulated electrical conduc-

tivities with respect to the fluid flow direction, respectively. For isotropic conditions,
λ ≈ 1. We can get an idea about the degree of anisotropy from the amount of deviation
of λ from 1.
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Chapter 4

Results

4.1 Validation of the code and Results

Three extensive examples are given to illustrate the accuracy of the proposed numerical

method to monitor the evolution of conductivity in the subsurface with different subsur-

face configuration. The first example deals with checking the robustness and the error

that creeps in for a given value of conductivity (σgiven) in the media and whether it is the

same as the numerically obtained value of conductivity(σsim) for different conductivity

contrasts between the extra medium. The second example deals with a layered (series

and parallel) model and checks whether the model follows the "Rule of Mixtures". The

third example is finding the effective conductivity for a randomly distributed conductiv-

ity map and check whether the σsim values fall under the theoretically-known boundaries.

The ‘Rule-of-mixture’ equations are widely used to bind the modulus and strength of

fiber-reinforced composites based on the fiber filler’s weighted contributions and matrix.

The electrical properties are also treated similarly. The effective conductivity in a mix-

ture of components having different conductivities flows the "Rule of Mixtures" or, more

specifically, the "Voigt and Reuss Bounds" (Voigt, 1889; Reuss, 1929), also known as the

Weiner Bounds (Wiener, 1912) . The Voigt and the Reuss bounds are essentially weighted

arithmetic and harmonic mean constituting the components constituting the media whose

effective conductivity that we need to find out.

Suppose the two conductivity present in the wetting phase of the medium are σ1 and σ2.

And the wetting phase of the medium constitutes of f part of σ1 and (1-f) part of σ2.

Thus the effective conductivity bounds are given as,
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Voigt Bound (Upper bound):

σvoigt = fσ1 + (1− f)σ2 (4.1)

Reuss Bound (Lower bound):

σreuss =

(
f

σ1
+

1− f
σ2

)−1

(4.2)

4.1.1 Testing the robustness

The robustness is to be tested by calculating ho much the numerically calculated results
deviate from the original value of conductivity. In order to test that, a conductivity of
the media (σ) of 1 S/m is given as an input to the domain, and it is to be checked how
much the simulated value of measured conductivity deviates from 1 S/m. In the proposed
geometry for the conductivity as in section 3.2.2, the conductivity value between the
potential electrodes is taken to be 1 S/m as shown in fig.4.1.
The σex i.e., the conductivity of the extra space where the potential and the current

Figure 4.1: a.Schematic representation for testing the robustness of the solver.
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Figure 4.2: The different values of σsim for different values of σex.

electrodes are placed. The value of σex has been changed for a range of values whereas the
internal conductivity is kept constant at 1 S/m. And it was checked till what conductivity
contrast, the model can accurately obtain the value of σsim such that σsim ≈ σ(= 1S/m).
Suppose the potential measured by P1 electrode is V 1 V and P2 electrode is V 2 V. And
according to the boundary conditions as explained in section 3.2.2, the potential at the
left boundary of the system is 1V and the right boundary is 0V. The solution algorithm
that is used for the check is explained in fig 4.1.
From the table given in fig. 4.2, it can be seen that the accuracy decreases as the contrast
increases but the the the error in computation remains pretty small (≈ 0.1%) till σex =
1× 107S/m. But for a very high contrast the error also increases pretty much more than
50%. Also, this test has been done at a mesh size of 200 × 200. The error will decrease
for a much finer mesh. From this experiment we can conclude about the conductivity
contrast that we can assume for our original case.

4.1.2 Series and Parallel model

According to the "Rule of mixtures"/"Voigt and Reuss bounds"/"Weiner bounds" , the

extremes of the effective conductivity of a mixture of different conductivities is obtained

by the weighted arithmetic mean and the weighted harmonic mean of the conductivities

mixed in the wetting phase and the weights being the volume fraction of each one of them,

f . So, by arranging the different layers having contrasting conductivities in a series or a

parallel configuration, we can check whether the effective conductivities for different values

of f does match with the calculated values of the bounds. Some of the configurations are
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shown in fig.4.3.

Figure 4.3: The configurations used for the test.

Figure 4.4: The Voigt and Reuss bounds and the plots for the parallel and series configuration.

From fig.4.4, it can be seen that all the points fall along the exact bounds for all the
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range of volume fraction. Thus we can safely conclude that the model works fine with

very negligible deviation.

4.1.3 Chessboard tests

In order to test the model and whether the calculated effective conductivities stay within
the calculated bounds, the model is tested on a 8x8 chessboard-like conductivity field with
random conductivity blocks at random squares. The conductivity field on the chessboard
contains all the possible volume fraction of conductivity regions from 0 to 1.Also for each
value of f, there are more than one conductivity configuration possible on the chessboard.
That is why for each value of volume fraction, the model is tested for two different
configurations as it can be seen in fig.4.5 and fig.4.6. It can also be seen that all

Figure 4.5: The different chessboard configurations: a: f=0.25, b: f=0.5, c: f=0.5, d: f=0.75

the conductivity points does lie inside the bounds for all the chessboard configurations.
From the figure, it can be noticed that there is a sudden conductivity drop around f =
0.6. This can be attributed to the percolation threshold () for electrical conductivity.
The percolation threshold can be defined as the given volume fraction for a particular
component in a mixture that allows the percolation of the higher conductivity part. It
is the value of f for which the mixture changes from a low conductive material to a high
conductive material.
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Figure 4.6: Effective conductivity for the chessboard model and the Reuss and Voigt Bounds

4.2 Sensitivity Analysis of Rayleigh Number

4.2.1 Effect on effective conductivity

As it was discussed in section 2.1.2, the Rayleigh number plays a big role in determining

the overall physics of the model. So, the model is tested for a series of Rayleigh numbers

to check the variation of evolution of the instability for the different Rayleigh numbers.

With the variation in Rayleigh number, there is a variation of mixing length, the average

velocity of the fingers, and the finger number density (FND). Because of the change in

physics due to the change in Rayleigh numbers, the conductivity also changes. The test is

carried on for a series of Rayleigh numbers 1000, 2000, 5000, 7000 and 10000. So for each
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one of the Rayleigh number the same modeling and simulation procedure has been taken

as shown in fig.3.1. The evolution of effective conductivity has been plotted in fig.4.7.

For the figure, it can be seen that the effective conductivity decreases with time for any

Figure 4.7: Conductivity evolution for a range of Rayleigh numbers.

given Ra, and decreases with Ra at any given time. For an increase in Rayleigh number,

the finger number density increases, the wavelength decreases, and the mixing length in-

creases faster. Mixing length is defined as the interface’s width from concentration 10%

to concentration 90% of the maximum concentration. From fig4.7, we can get an idea

about when the instability starts from the effective conductivity measurement.

4.2.2 Effect on Anisotropy analysis

As discussed in Section:3.3, the anisotropy analysis has also been done for the range of
Rayleigh numbers 1000, 2000, 5000, 7000 and 10000. With the start of the instability, the
system shows a very high anisotropy, but with the increase in mixing length, the system
tends towards a more isotropic system (λ ≈ 1).
Figure4.9a and b clearly show how the anisotropy evolves with time for different Rayleigh
numbers. The behavior of the anisotropy factor is almost similar for all the values of
Rayleigh numbers. In Fig.4.9a, the variation of the initial part, when the instability starts,
has been shown. It can be seen that initially, the rate of decrease of anisotropy factor
is much more for the lower values of Rayleigh numbers, and then the rate of decreases
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Figure 4.8: Concentration field for two different Rayleigh numbers at different times of evolution.

Figure 4.9: a. Evolution of the anisotropy coefficient with Rayleigh numbers 2000 to 10000, b. For
Rayleigh numbers 2000 and 7000 for a longer time to homogenize. The time mentioned is the nondimen-
sional time.

increases as the instability evolves. For example, in Fig.4.9a, at time = 0.2, the value
of λ for Ra = 1000 is minimum and Ra = 10000 is maximum, whereas, for time = 1.8,
Ra = 1000 has the maximum value of λ and Ra = 1000 has the minimum value. From
Fig.4.9b, which gives an overall picture for two values of Rayleigh numbers 2000 and 7000,
it can be seen that the higher Rayleigh number reaches isotropic conditions faster than a
lower Rayleigh number. Also, it can be noticed that there is a sudden drop of effective
conductivity from t = 2.2 to t = 2.3 for Ra = 2000 and from t = 2.9 to t = 3.0 for Ra
= 7000. This is because, at that time, the first finger from the higher concentration zone
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reaches the opposite side (See fig.4.8). Thus the connectivity of the higher conductive
fluid is established from one side to the other. Also, it can be intuitively said that the
velocity of the evolution of instability fingers is faster for a higher Rayleigh number, and
it slows down with the decrease of Rayleigh number, which is also evident from fig.4.8.

4.3 Application to Seawater/Freshwater Interface

In this section, the simulation procedure described to study the effective conductivity of

Rayleigh Taylor instabilities is applied to a porous media involving more denser saltwater

over low-density freshwater. The model that is programmed here can be directly applied

to saltwater-freshwater fingering instabilities observed in a porous media when saltwater

overcoming in coastal aquifers and also in salt lakes where we find the similar kind of

a scenario where we have a layer of higher density fluid over lower density fluid thus

triggering the Rayleigh Taylor Instability in such cases. There have been many numerical

studies that are going on regarding these density-driven fingering instabilities in porous

media (Johannsen et al. (2006)). So far, people have used intrusive methods that do not

apply to the field or any very difficult to apply on the field. Here we propose to simulate

what will be the effective response of the time-varying instabilities and what would be

the effective electrical response of it as ERT (Electrical Resistivity Tomography) can be

used effectively on the field.

As discussed in Section: 2.2.2, the net bulk conductivity is calculated from the ionic

concentration in the fluid phase or the wetting phase. However, in a practical scenario,

researchers often try to get to the ionic concentration field from the measurement of the

effective electrical conductivity of the media at the resolution scale from the different

petrophysical relationships (Eq.2.22, Eq.2.23). The application of ionic concentration is

driven density difference, which is the triggering factor for the Rayleigh Taylor Instability

in a porous media, which can be seen in saline-water freshwater interaction in coastal

regions between seawater and groundwater.

In the case of a saline water-freshwater interaction, for the Rayleigh Taylor instability, we

need to determine the value of Rayleigh number (Eq.2.6) determine the physics. To apply

the model, we need to get the specific petrophysical properties and electrical parameters

for the media and the pore fluids (saline water and fresh water). For the media, we

considered a consolidated section of sand. The hydrodynamic properties of sand are
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taken from Jougnot and Linde (2013). The hydrodynamic and electrical properties of

the pore fluids (seawater and freshwater) are calculated from Jougnot and Linde (2013);

Lide (2006); El-Dessouky and Ettouney (2002) and Sharqawy et al. (2010). It is assumed

that the freshwater is 100 times less saline than the seawater from the observations. Now

Parameter Saltwater Freshwater Units
Salinity 0.5100 0.00493 mol/l
Density 1.0202 0.8896 kg/l

Dynamic Viscosity 1.060 × 10−3 1.001 × 10−3 kg/m s

Parameter Value Units
Temperature (T) 20 oC
Permeability (k) 1.54×10−11 m−2

Porosity (φ) 0.403 (-)
Formation factor (F) 3.569 (-)

Cementation exponent (m) 1.40 (-)
Saturation exponent (n) 1.6 (-)

Molecular diffusivity of NaCl 1.6×10−9 m2s−1

Table 4.1: Hydrodynamic parameters of the pore fluids (top); Other physical parameters (bottom)

it can be seen that the viscosity is also contrasting for the seawater and the freshwater.

Which may trigger a viscosity driven Saffman-Taylor instability (Saffman and Taylor,

1958) over the density driven Rayleigh Taylor instability. But in case of the seawater

and the freshwater considered here, the density contrast is much more than the viscosity

contrast. Thus the density driven instability will be much more dominant in this case.

From all the values given in Table 4.1, we can get the Rayleigh number value of 5090.79

(from Eq.2.6). The non-dimensional time scale is calculated to be around 35 hours (from

Eq.2.9). That is, t′ = 1 in the simulation means t = 35 h dimensionally.

From Fig.4.10 and the corresponding plots in fig.4.11, it can be easily understood how
the net conductivity varies, and the anisotropy changes as the instability progress between
the denser saltwater at the top and the lighter freshwater at the bottom. From the figures,
it can be concluded about the extent of mixing between the saltwater and the freshwater.
Also, in all the physical processes involving density-driven instability in nature, this kind
of numerical model will help to get a time-lapse model of effective conductivity. Thus
it is possible to compare the field results with the simulation results to get a better
validation of the numerical model. The results can also be directly compared with the
ERT prospecting in near-surface phenomenon, thus opening up several possibilities for
comparing field scale tomography results with the simulation results. Nevertheless, there
are still numerous scopes of improvement in the numerical model. Also, we need to
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consider the anisotropic nature of the electrical conductivity at the resolution scale while
performing inversion on their ERT data. The anisotropy analysis suggests a strong impact
of pore scale and sub-resolution effects of the instability on the up-scaled bulk electrical
conductivity. The anisotropy analysis shows quite a change in value as the instability
progresses.
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Chapter 5

Discussion and Conclusion

5.1 Discussion

5.1.1 Rayleigh Taylor instability of the pore fluid

The instability of a dense fluid layer supported by a light one has generally known as

Rayleigh-Taylor (RT) instability. It can occur under gravity and, equivalently, under an

acceleration of the fluid system toward the denser fluid. We considered a 2D porous

media and how the instability progresses with time for a set of miscible fluids having

a density contrast to trigger the Rayleigh Taylor Instability. Under our consideration,

the fluids are the seawater and the groundwater and how they will interact if we have

higher denser seawater at the top and a much lower denser freshwater at the bottom in a

reservoir scenario. The Rayleigh number instability modeling has been done in an entirely

nondimensional way, and the Rayleigh number defines the physics of the instability in the

porous media singlehandedly. From Eq.2.6, it can be seen the Rayleigh number depends

on the different hydrodynamic parameters of the two fluids involved, and by varying any

one of these, we can define a new physics, and the model will simulate the corresponding

flow-physics.

5.1.2 Relationship between concentration field and measured conductivity

In Section 2.2.2, it has been discussed how the conductivity field is mapped from the
concentration field. Figure. 4.7 can be explained as such that for all the values of Rayleigh
numbers, the conductivity gradually decreases. Also, from the Rayleigh number tests, we
can see how the conductivity changes with the increase in Rayleigh number (Fig. 4.7).
Overall the effective conductivity decreases with time as the instability progresses, but the
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rate of decrease of the effective conductivity increases for an increase in Rayleigh number.
This particular phenomenon of the decrease of effective conductivity with the instability’s
progress can be explained from Fig. 4.4, where we see how the bounds are defined for
the different configurations. The series configuration defines the lower bounds, and the
parallel configuration defines the upper bounds. Thus the parallel configured system has
more conductivity than a series system.
At t=0, the concentration field is arranged in a parallel mode of connection. As the
instability progresses, there is a transition from the parallel connection to homogeneity
as the fluids of the two concentration mixes. Now, as the instability progresses i.e., the
lighter fluid starts pushing, the denser fluid and vice-versa and the fingers are generated,
we can consider that to be analogous to a series configuration as the fingers reach the
opposite sides (check Fig. 4.8 to see the transition). This explains the conductivity drop
as the instability progresses. Thus, by monitoring the conductivity, we can comment on
the reservoir’s concentration distribution and how much the instability has progressed.

5.1.3 Electrical conductivity anisotropy analysis

From the previous section, it can be concluded that the medium’s net conductivity is
dependent on the orientation of the medium. We can also say that the orientation changes
the nature of the value of effective conductivity from a parallel nature to a series one by
just a rotation of 90o about the center (Check Fig.4.3). The orientation dictates the
connectivity between the faces concerning fluid transport in the medium. The method
has been discussed in detail in Sec.3.3. We also did the anisotropy test for all the Rayleigh
number values to monitor how the anisotropy factor changes with the instability evolution
with time for the different physics. (Fig.4.9). From the diagrams, we can see that the
anisotropy coefficient starts with a very high number initially, but it gradually decreases
towards one as the instability progresses, and the mixing starts. This is logical because,
for a homogeneous media, the anisotropy factor is theoretically equal to one, and as the
mixing progresses, the system gradually starts to move towards homogeneity. Thus the
factor approaches 1. We can also comment on the mixing rate from the anisotropy factor
for the different Rayleigh numbers because the anisotropy factor gives an idea bout how
fast the mixing is progressing, which also depends on the velocity of the fingers.

5.1.4 Improvements and ideas for further studies

Over the last few decades, there has been different illustrations and studies about variable
density flows in groundwater hydrology which includes seawater intrusion, fresh-saline wa-
ter interfaces and saltwater upcoming in coastal aquifers, subterranean groundwater dis-
charge, dense contaminant plume migration, DNAPL studies, density-driven transport in
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the vadose zone, flow through salt formations in high-level radioactive waste disposal sites,
heat and fluid flow in geothermal systems, palaeohydrogeology of sedimentary basins, sed-
imentary basin mass and heat transport and diagenesis, processes beneath sabkhas and
salt lakes and buoyant plume effects in applied tracer tests (see Simmons (2005), Simmons
et al. (2001), Diersch and Kolditz (2002)). For further research this model can also be
developed for a 3D spatial scenario so that the bulk conductivity can be measured in all
the 3 directions as the evolution of the subsurface processes in time lapse similar to 4D
monitoring of a groundwater reservoir.
One major societal problem that gives rise to the phenomenon of contaminant and reac-
tive transport through near-surface reservoirs flows through the porous media as DNAPL
(dense non-aqueous phase liquid), which results in plumes developing from landfills and
reactive waste disposal sites. The model can be applied to monitor density-driven con-
taminant transport or reactive mixing in the groundwater.
CO 2 storage is also a significant application where we can observe Rayleigh Taylor in-
stabilities, but since CCS is not a much near-surface phenomenon, boreholes can be dug.
The mixing rate of supercritical CO2 and the evolution of the instability can be monitored
between boreholes using the bulk conductivity model.

5.2 Conclusion

The complexity of variable density problems generally increases as one moves from situa-

tions where light fluid overlies dense fluid to potentially unstable situations where dense

fluid overlies less dense fluid. In unstable cases, transport can be characterized by rapid

instability development where finger instabilities sink under the gravitational influence,

enhancing solute transport and mixing. These are several emerging challenges in hydro-

geology, which involves monitoring density-driven near-surface and subsurface flows. In

fact, monitoring density-driven flows in the subsurface from field data and correlating that

with the simulation data to understand the transport physics of subsurface flows better

because field data does not always provide a very clear picture of the physics. From field-

scale data, it becomes challenging to analyze and get how the concepts of heterogeneity,

concentration dispersion, etc. affect the flow regime, mixing length, the mixing rate, etc.

That is why this model is devised to implement the physics and see how the density-driven

instabilities affect the net conductivity inside an aquifer.
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This conductivity model devised in an open-source software OpenFOAM can be used
in any kind of near-surface pore-scale fluid transport phenomenon. This suggests a strong
impact of the pore scale and sub-resolution effects on the bulk electrical conductivity in
terms of magnitude and anisotropy. The model can also be up-scaled and downscaled to
any resolution necessary. The mode has been tested via a widespread variation of conduc-
tivity maps and tested to validate the calculated bulk conductivity stays within the Voigt
and Reuss bounds. The results can also be later validated with field-scale measurements
and get an idea of real-time subsurface conditions by matching the simulated data from
the model with the measured data. This opens up a range of opportunities to investigate
the link between the electrical signals and a variety of pore scale subsurface processes
such as reactive transport, mixing processes in porous media, and other biogeochemical
reactions.
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Chapter 6

Appendix

6.1 OpenFOAM codes

6.1.1 For Rayleigh Taylor Instability

Solver: darcyConcFoam.C

#include "fvCFD.H"

#include "simpleControl.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

int main(int argc, char *argv[])

{

#include "setRootCase.H"

vector g0(0,-1.00,0);

dimensionedVector zy("g",dimensionSet(0,1,-2,0,0,0,0),g0);

#include "createTime.H"

#include "createMesh.H"

#include "createFields.H"

simpleControl simple(mesh);

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Info<< "\nCalculating temperature distribution\n" << endl;

while (simple.loop())

{

Info<< "Time = " << runTime.timeName() << nl << endl;

while (simple.correctNonOrthogonal())

{

volVectorField gradc(fvc::grad(c));

solve
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(

- fvm::laplacian(p) - gradc.component(vector::Y)

);

U = -(fvc::grad(p)) + zy*c ;

phi = linearInterpolate(U) & mesh.Sf();

solve

(

fvm::ddt(c)

+ fvm::div(phi, c)

- fvm::laplacian((1/Ra), c)

- (1/Ra) * a * fvm::laplacian(mag(U) ,c, "laplacian(Dc,c)")

- ((1/Ra)*(1-a))/((mag(U)+delS))*fvm::laplacian((U*U),c, "laplacian(Dc,c)" )

);

}

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << "s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;

}

Info<< "End\n" << endl;

return 0;

}

6.1.2 For calculating the Bulk Elelctrical conductivity

Solver: poissonFoam.C

#include "fvCFD.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

int main(int argc, char *argv[])

{

#include "setRootCase.H"

#include "createTime.H"

#include "createMesh.H"

#include "createFields.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Info<< "\nStarting iteration loop\n" << endl;
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while (runTime.loop())

{

Info<< "Iteration = " << runTime.timeName() << nl << endl;

solve

(

fvm::laplacian(sigma1,V) + I

);

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;

}

Info<< "End\n" << endl;

return 0;

}

6.2 MATLAB code for transferring the field and post processing

%run it section-wise, not together.

%% input

mx = 600; my = 720; m = mx*my ; % mesh size

deltaT = 0.1;

iniT = 0;

finT = 3.2;

Ra = 5090.79; %change reynolds no

count = iniT:deltaT:finT;

%% postprocess RTI

%reading the concentration distribution files

for i = 1:(finT/deltaT + 1)

%mes(i) = fopen([’---folderpath---\RTI_Ra’,num2str(Ra),’\’,num2str((i-1)/10),’\c’],’r’);

mes(i) = fopen([’---folderpath---\RTI_salfre1\’,num2str((i-1)/10),’\c’],’r’);

%datac(:,i) = textread([’---folderpath---\RTI_Ra’,num2str(Ra),’\’,num2str((i-1)/10),’\c’], ’%s’,’delimiter’, ’\n’);

datac(:,i) = textread([’---folderpath---\RTI_salfre1\’,num2str((i-1)/10),’\c’], ’%s’,’delimiter’, ’\n’);
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end

P = datac(26:(26+(mx*mx)-1),:);

for j = 1:(finT/deltaT + 1)

S = P(:,j);

Q = sprintf(’%s*’, S{:});

c(:,j) = sscanf(Q, ’%f*’);%each column of c is each matrix of c

c(:,j) = c(:,j) ;

eval([’A’ num2str(j) ’= reshape(c(:,j),[mx,mx]);’]);%each column in a saperate matrix of its own

figure(j) %%generate the images % info_access: G = eval([’A’ num2str(j);]);

pcolor(eval([’A’ num2str(j);])’);

shading interp; axis image;colorbar;

title(’Concentration Field’)

F(j) = getframe(gcf);

close;

end

writerObj = VideoWriter(’Concentration.avi’);

writerObj.FrameRate = 2;

% open the video writer

open(writerObj);

% write the frames to the video

for i=1:length(F)

% convert the image to a frame

frame = F(i) ;

writeVideo(writerObj, frame);

end

% close the writer object

close(writerObj);

%% postprocess RTI + Preprocess ERT

%dimensionalise everything and map to conductivity field

T = 20; %temperature

d1 = 5.6;

d2 = 0.27;

d3 = -1.51e-4;

d4 = 2.36;

d5= 0.099;

d6 = 0.214; %sen and goode 1992
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phi = 0.403; %porosity

m =1.40; %cementation exponent

ff = phi^(-m); %formation factor

ex = 1e4 * ones(600,60); %making a extra space dimension of 600X60 mesh size measuremnt zone

for j = 1:(finT/deltaT + 1)

G = eval([’A’ num2str(j);]);

%G = G’; %comment out for anisotropy calculation

% G = (G + 0.01) .* 0.5; %will change later

G = (d1 + d2*T + d3*(T^2)).*G - ((d4 + d5*T)./(1 + d6 .* sqrt(G))) .* G.^(1.5);%senandgoode | conductivity of pore fluid

%find the conductivity of medium

G = G .* (1/ff);

eval([’B’ num2str(j) ’=[ex G ex] + 0.00001;’]);

figure(j)

pcolor(log(eval([’B’ num2str(j);]))); shading interp;

axis image;colorbar;

title(’Conductivity Field (in log(S/m))’);

F(j) = getframe(gcf);

close;

end

writerObj = VideoWriter(’Conductivity.avi’);

writerObj.FrameRate = 2;

% open the video writer

open(writerObj);

% write the frames to the video

for i=1:length(F)

% convert the image to a frame

frame = F(i) ;

writeVideo(writerObj, frame);

end

% close the writer object

close(writerObj);

% write the conductivity field on a file : i/p in OpenFOAM

for i = 1:(finT/deltaT + 1)

G = eval([’B’ num2str(i);]);

eval([’L’ num2str(i) ’= zeros(mx*my,1);’]);

M = zeros(mx*my,1);
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for j = 1:mx

M(1+(j-1)*my:(j-1)*my+my) = G(j,:);

end

eval([’L’ num2str(i) ’= M;’]);%thus we have all the linear matrices suitable for openFOAM

%convert them to saperate sigma1 files with headers and tailnote

J(:,i) = M ;

end

J = num2cell(J);

messig = fopen([’---folderpath---\poissonERT_test\constant\sigma1’],’r’);

sigmaread = textread([’---folderpath---\poissonERT_test\constant\sigma1’], ’%s’,’delimiter’, ’\n’);

for i = 1:(finT/deltaT + 1)

%make the conductivity files

sigma1 =[sigmaread(1:25);J(:,i);sigmaread(432026:432054)];

%copy to files

filePh = fopen([’---folderpath---’,num2str(i),’\constant\sigma1’],’w’);

%D = eval([’sigma’ num2str(i);]);

fprintf(filePh,’%s\n’,sigma1{:});

fclose(filePh);

end

%% run the ERT in OpenFOAM till the value of i

%% postprocess of ERT

sigma_ex = 1e4 ; A = 1;

l = 0.04; %change the value acc to width for current measurement

V0 =0;

%close all;

format longE;

% take measurement electrode data

for i = 1:(finT/deltaT + 1)

casename = [’RTIERT’,num2str(i)]; % change the case name accordingly

mes11 = fopen([’---folderpath---’,casename,’\postProcessing\P11\1\line_v.xy’],’r’);

formatSpec = ’%f %f’;

sizeA1 = [2 Inf];

P11 = fscanf(mes11,formatSpec,sizeA1);

fclose(mes11);

mes12 = fopen([’---folderpath---’,casename,’\postProcessing\P12\1\line_v.xy’],’r’);

formatSpec = ’%f %f’;

42



sizeA1 = [2 Inf];

P12 = fscanf(mes12,formatSpec,sizeA1);

fclose(mes12);

P1_values = [P11,P12];

P1_values = P1_values’;

P1 = median(P1_values(:,2));

mes21 = fopen([’---folderpath---’,casename,’\postProcessing\P21\1\line_v.xy’],’r’);

formatSpec = ’%f %f’;

sizeA1 = [2 Inf];

P21 = fscanf(mes21,formatSpec,sizeA1);

fclose(mes21);

mes22 = fopen([’---folderpath---’,casename,’\postProcessing\P22\1\line_v.xy’],’r’);

formatSpec = ’%f %f’;

sizeA1 = [2 Inf];

P22 = fscanf(mes22,formatSpec,sizeA1);

fclose(mes22);

P2_values = [P21,P22];

P2_values = P2_values’;

P2 = median(P2_values(:,2));

% measure do(V)

dataV = fopen([’---folderpath---’,casename,’\postProcessing\singleGraph1\1\line_v.xy’],’r’);

formatSpec = ’%f %f’;

sizeA1 = [2 Inf];

Vy1 = fscanf(dataV,formatSpec,sizeA1);

Vy1 = Vy1’;

fclose all;

V1 = Vy1(:,2);

y1 = Vy1(:,1);

% figure ;

% plot(y1,V1);

% xlabel(’y’,’FontSize’,10,’FontWeight’,’bold’);

% ylabel(’V’,’FontSize’,10,’FontWeight’,’bold’);
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% title(’V(y) variation’);

% grid on;

dataV = fopen([’---folderpath---’,casename,’\postProcessing\singleGraph2\1\line_v.xy’],’r’);

formatSpec = ’%f %f’;

sizeA1 = [2 Inf];

Vy2 = fscanf(dataV,formatSpec,sizeA1);

Vy2 = Vy2’;

fclose all;

V2 = Vy2(:,2);

y2 = Vy2(:,1);

% calculate eff sigma

V1m = mean(V1);

V2m = mean(V2);

I_meas = (V1m - V2m)*sigma_ex*(A/l) ;

delta_V = (P2-P1);

R_meas = delta_V / I_meas ;

%sigma_check_p = (1-vf) * 1 + (vf)*0.001

%sigma_check_s = ((1-vf)/1 + vf/0.001)^-1

sigma_meas (i,:) = (1.000105)/(A * R_meas)

%sigma_check = vf * 0.001 + (1-vf)*1

% read data map (V,sigma)

mx = 720; my = 600; m = mx*my ; %change for a change inmesh size

dataV = textread([’---folderpath---’,casename,’\1\V’], ’%s’,’delimiter’, ’\n’);

P = dataV(26:(26+m-1));

S = sprintf(’%s*’, P{:});

Vl = sscanf(S, ’%f*’);

datasig = textread([’---folderpath---’,casename,’\constant\sigma1’], ’%s’,’delimiter’, ’\n’);

Q = datasig(26:(26+m-1));

R = sprintf(’%s*’, Q{:});

sigmal = sscanf(R, ’%f*’);
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V = reshape(Vl, [mx,my]);

V = V’;

sigma = reshape(sigmal , [mx,my]);

sigma = sigma’;

% plot streamlines

% calculate potential gradients

[Vx,Vy]=gradient(V(:,61:660)); %change the val acc to mesh size

% figure(3)

% pcolor(Vx); shading interp;

% figure(4)

% pcolor(Vy); shading interp;

Ix=sigma(:,61:660).*Vx;

Iy=sigma(:,61:660).*Vy;

Size_V=size(V(:,61:660));

nDisp=5;

Disp_Ix=Ix(1:nDisp:Size_V(1),1:nDisp:Size_V(2));

Disp_Iy=Iy(1:nDisp:Size_V(1),1:nDisp:Size_V(2));

[x,y]=meshgrid(61:nDisp:660,1:nDisp:Size_V(1));

figure(i)

quiver(x,y,Disp_Ix.*1e10,Disp_Iy.*1e10,3,’r’);

colorbar

axis image

set(gca,’YDir’,’normal’)

title(’Current intensity, J [A m^{-2}]’)

F(i) = getframe(gcf);

end

writerObj = VideoWriter(’Current Streamlines.avi’);

writerObj.FrameRate = 2;

% open the video writer

open(writerObj);

% write the frames to the video

for i=1:length(F)

% convert the image to a frame
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frame = F(i) ;

writeVideo(writerObj, frame);

end

% close the writer object

close(writerObj);

% open your file for writing

fid = fopen(’eff_sigma.txt’,’wt’); %name changed for the anisotropy analysis

% write the matrix

if fid > 0

fprintf(fid,’%d\n’,sigma_meas’);

fclose(fid);

end

%% Testing the aniotropy

% step1: transfer the files to the respective folders

% now continue

%count = iniT:deltaT:(finT-0.1)

%sig0 = textread([’---folderpath---’,num2str(Ra),’\eff_sigma.txt’], ’%s’,’delimiter’, ’\n’);

sig0 = textread([’---folderpath---\eff_sigma.txt’], ’%s’,’delimiter’, ’\n’);

S = sprintf(’%s*’, sig0{:});

sig0 = sscanf(S, ’%f*’);

%sig90 = textread([’---folderpath---’,num2str(Ra),’\eff_sigma90.txt’], ’%s’,’delimiter’, ’\n’);

sig90 = textread([’---folderpath----\eff_sigma.txt’], ’%s’,’delimiter’, ’\n’);

S = sprintf(’%s*’, sig90{:});

sig90 = sscanf(S, ’%f*’);

lambda = sqrt(sig0./sig90);

figure(911);

plot(count’,lambda,’d--’); %change
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